0=-5x-x^2/8-10

Simple and best practice solution for 0=-5x-x^2/8-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-5x-x^2/8-10 equation:



0=-5x-x^2/8-10
We move all terms to the left:
0-(-5x-x^2/8-10)=0
We add all the numbers together, and all the variables
-(-5x-x^2/8-10)=0
We get rid of parentheses
x^2/8+5x+10=0
We multiply all the terms by the denominator
x^2+5x*8+10*8=0
We add all the numbers together, and all the variables
x^2+5x*8+80=0
Wy multiply elements
x^2+40x+80=0
a = 1; b = 40; c = +80;
Δ = b2-4ac
Δ = 402-4·1·80
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-16\sqrt{5}}{2*1}=\frac{-40-16\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+16\sqrt{5}}{2*1}=\frac{-40+16\sqrt{5}}{2} $

See similar equations:

| 9x+2=8x+3 | | 2=(1.12^x) | | g+6=5(g-2) | | 7(x+4)-3=25 | | 121x^2-390x+81=0 | | -4(v-8)=-8v-8 | | 6-9x-4=-1+4x-14 | | 3/5x-2=7 | | 2x-5x^2=4 | | 128=12x | | -5x+7+x1=x-9 | | 4v+=10 | | 3n=3n+3 | | |4v+2|=10 | | 180(n-2)=90 | | −22−5(x+2)=3x | | 6x-35=2x+53 | | (5m-8)(m-8)=0 | | 5t-8t=117 | | w=2/16+12/6 | | -x+16=3x-4-2x+4-x | | 1/5x+6=-4/5x | | 8/16=t/40 | | 6x+3(x+4)=-6 | | 18(8y−1)=2y−14 | | -5-(x+6)=18 | | 5=2n | | 2n^2+161n-159=0 | | -9x-8=-34x+642 | | 27=9(5y-2 | | 5x+0=3x+4 | | 7x+x=4x-(-1) |

Equations solver categories